

- This webinar is being recorded
- Please ask questions using the Q&A button (not the chat)

Peter Griffin
Principal Analyst –
Heat and Buildings,
Regen

Webinar Chair

Kate Gilmartin
Volunteer Director,
Rossendale Valley
Energy;
Non-Executive
Director, GB Energy;
CEO, British Hydro
Association

Phil Proctor
Technical Director
and Digital Energy
Service Leader, Buro
Happold

Ainsley Barker
Investment Director,
Abundance
Investment

Adam Marvel
Development
Advisor, Social
Investment
Business (SIB)

Agenda

1:00 - 1:05 (5 mins) **Welcome and introductions** Peter Griffin, Regen

1:05 - 1:15 (10 mins) **NZTS progress update – refined 8-Stage Delivery Methodology** Kate Gilmartin, RVE

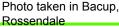
1:15 - 1:25 (10 mins) **Techno-Economic Model – assessing technical feasibility at street scale** Phil Proctor, Buro Happold

1:25 - 1:40 (15 mins) **Financing NZTS – the financial model and making this investable** Ainsley Barker, Abundance Investments and Adam Marvel, SIB

1:40 – 1:45 (5 mins) **Reflections and next steps – local delivery and replication potential** Kate Gilmartin, RVE

1:45 – 2:00 (15 mins) **Audience Q&A and wrap-up** Peter Griffin, Regen

NZTS progress update


Kate Gilmartin, RVE

Why terraces get left behind

- 6 million smaller terraces in UK
- Pre 1919 homes
- Installing electric boilers pushes up costs for residents
- Mixed tenure
- Low incomes, high fuel poverty
- Less space for alternative solutions
- Often outside of centralised district heating schemes

Why street by street?

Individual properties and tenure-based?

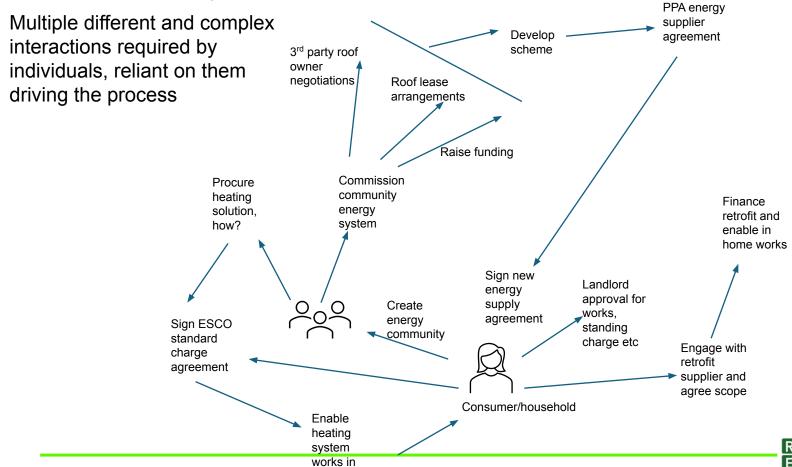
Changing and complex eligibility or single-measure incentives

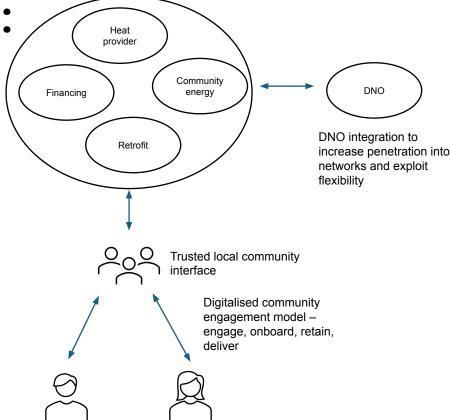
Fit and forget

OR

Street by street or neighbourhood?

Community-led fair share with long-term support


and care


Complexity for Individual

home

Community based:

A single delivery vehicle (the wrapper) with either consortium or SPV structure to deliver the service offering – selection of the model will likely be determined from the local authority capability

Households are engaged as a community with the service offer brought to them

NZTS: Route to deployment

• The solution is to develop and deploy 5 systems in tandem

We use an 8 stage methodology as an end to end process that enables dep

And a supporting tool kit that underpins all the activities

• Everything we develop corresponds to our sturdy stool....

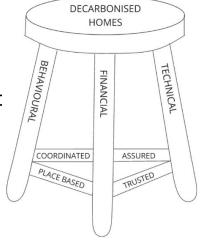
Physical infrastructure Connected shared ambient loops & heat pumps, Fabric retrofit, Solar PV / storage Smart kit

Virtual infrastructure

- A Smart Local Energy System (SLES),
- Digitally orchestrated through the Fairer Warmth platform,
- · Connecting and aggregating homes
- Enabling value from flexibility and balancing.

Digital Spine

- Orchestrated through the NZTS Fairer Warmth platform
- Data collection, collation and organsiation (BEM, TEM, FM)
- · Threads through and connects all systems,
- Monitors performance metrics, enables iteration, investment, and integration.

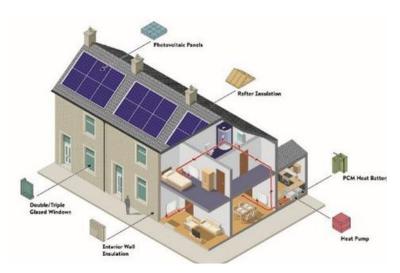

Demand creation

A community-first engagement process, Built on Reach-Engage-Retain method,

- Energy champs supported by digital platform
- Fostering deep trust and high take-up in underserved areas.

Organizational Governance

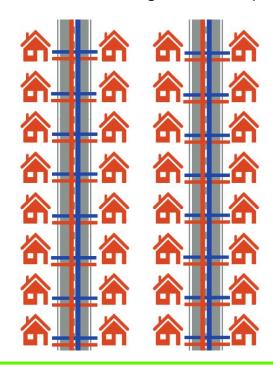
- · Lift-and-shift 'Viable Systems model'
- A nationally governed framework
- Enables autonomous local delivery
- · Embeds feedback, QA and learning.


The technical solution

What's the technical solution for delivering a whole system approach that delivers affordable energy and healthy warm homes?

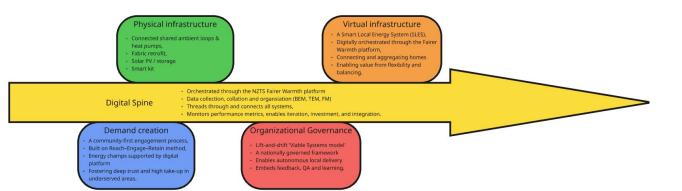
The Physical infrastructure

Optimal fabric upgrades - Depending on what's needed a mix of:


- Loft Insulation
- Internal Wall Insulation
- Less often: External Wall Insulation
- Air tightness measures
- Solar Panels (+ sometimes battery storage)
- New Windows and Doors
- Mechanical Ventilation with Heat Recovery
- Necessary repairs

Ambient Loop Ground Source Heat Pumps

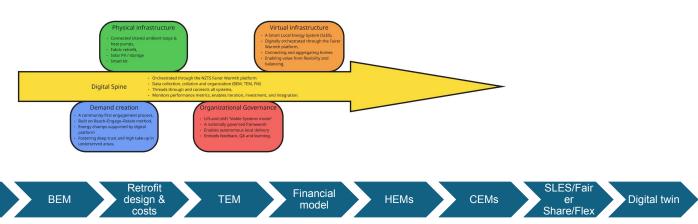
Buried in-street pipework with bore holes to take low grade heat from the ground and take that warm water (12degsC) to an in-home heat pump, where it will be upgraded by the heat pump to 45degC flow temp for the central heating system.



Getting Buy in – demand creation

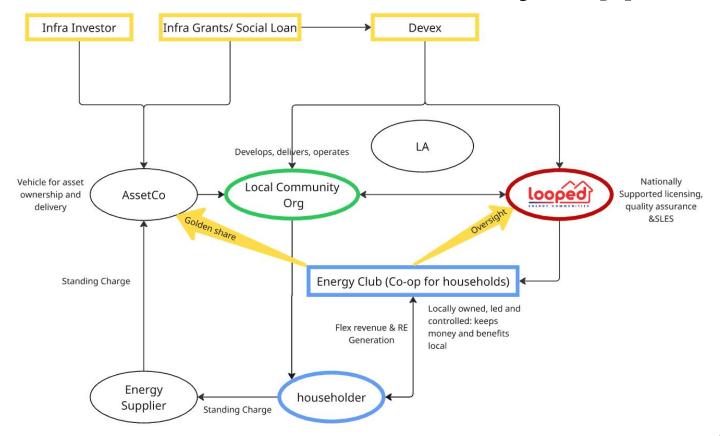
Behavioral - getting buy in – placed based solution, community engagement, community rooted governance/ ownership, local trust, local jobs, skills, quality assurance, well coordinated with legacy support, visible benefits.

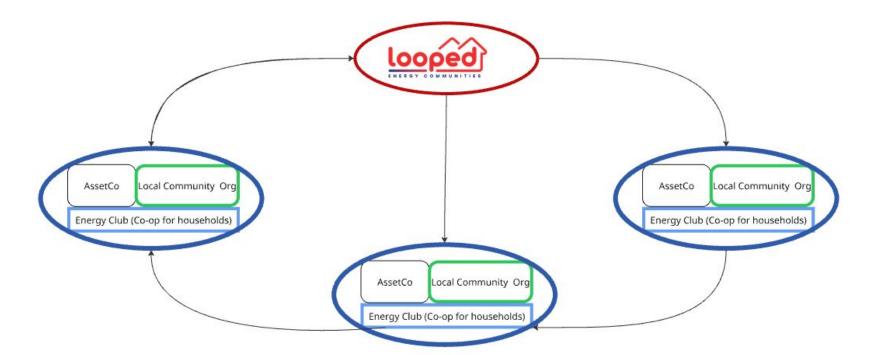
- Local energy champions engage with and sign people up
- Ongoing support, monitoring, maintenance and expansion
- Partnership or collaborative procurement with supply chain


Virtual infrastructure & digital spine

- Working in partnership with the electricity distribution grid operator (DNO)
- Developing a system between the Home Energy Management System (HEMS) and the Grid to create a Community Energy Management System
- Will help facilitate local balancing and aggregation of flexibility across a cluster of homes.

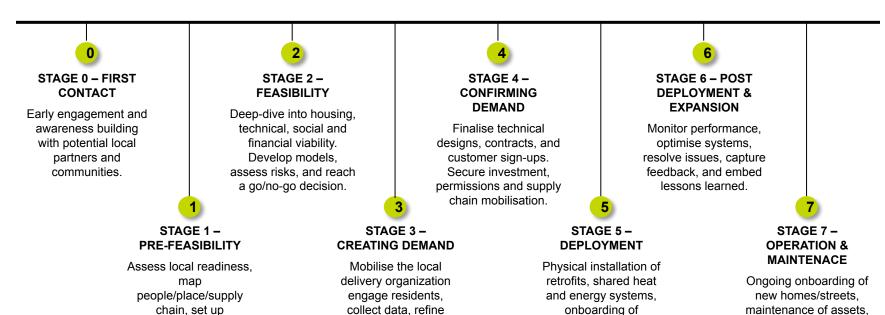
People


Property



Local Governance - Nationally supported

Local Governance - Nationally supported



8 Stage Methodology to deploy....

governance, and agree

intent to proceed.

Eight stages of development to deliver the 5 systems: ensure buy-in, governance, investment and quality while controlling spend and delivering community and customer confidence and supply chain involvement

collect data, refine models, design the retrofit/energy scheme.

and build investor/supply chain interest.

onboarding of households. QA and commissioning.

maintenance of assets. customer care, and long-term system optimisation.

Testing deployment of technical solution

Delivering 3 properties

Design specifics – Aim: Heat load <5.8 kW

Property 1: Mid terrace (conservation area)

Property 2: Mid terrace with extension (conservation are

Property 3: Back-to-back end terrace

PHPP Heat Load	Current	Baseline	Full design
Property 1	15 kW	4.7 kW	3.8 kW
Property 2	17.5 kW	5.7 kW	4.6 kW
Property 3	11.9 kW	8 kW	4.4 kW

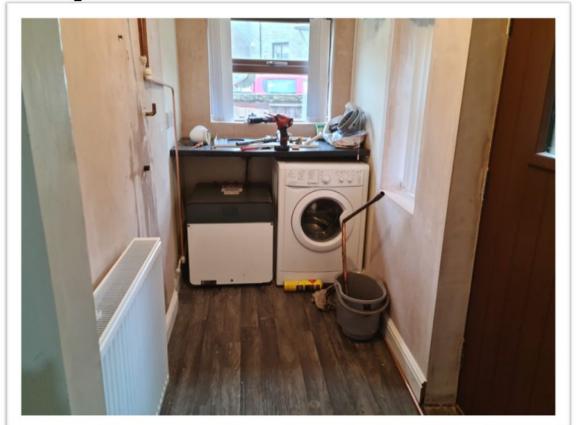
Baseline measures:

- RIR Insulation
- Basement floor soffit
- Retain windows and doors with new seals and hinges where required
- Airtightness: 3 ach
- MVHR 90% efficient
- PV & battery

Getting the site ready

Re-roofing and solar

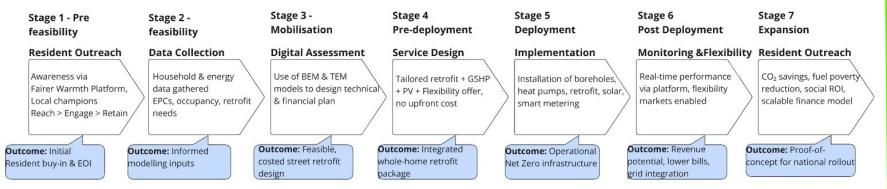
Boreholes


Trenching

Heat Pump

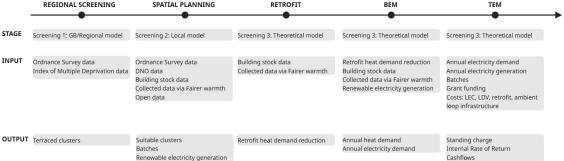
Fabric Retrofit

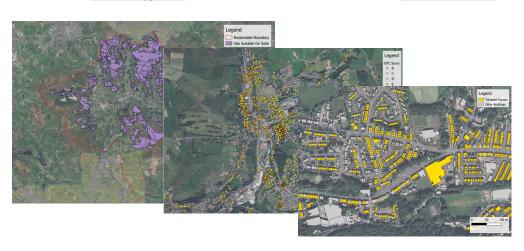
Monitoring the difference

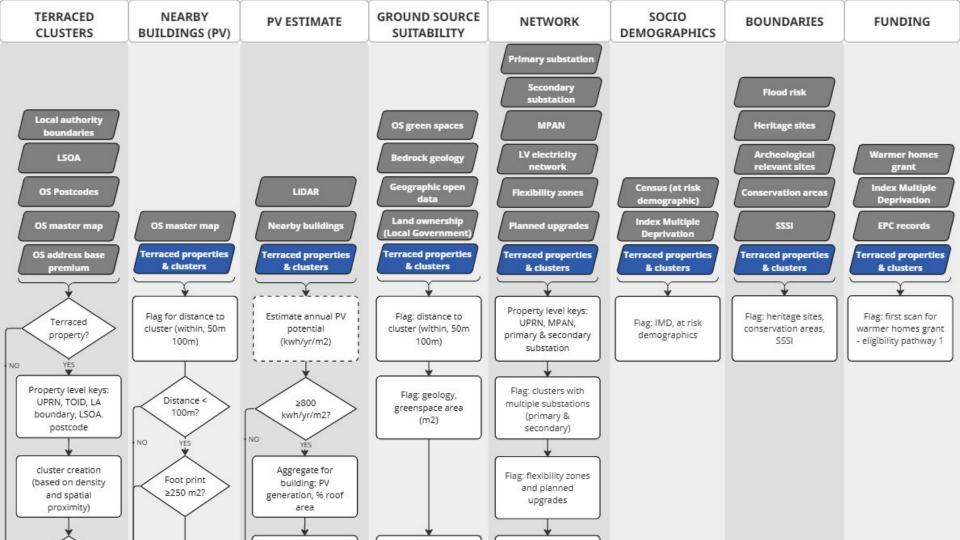

Techno-Economic Model – assessing technical feasibility at street scale

Phil Proctor, Buro Happold

Applying to to 7 Stages of the delivery model


- Each stage has a cost associated with it, whether and when this is directly allocated or not is determined by the financial model and risk appetite of partners
- Early stages are at risk and not recovered directly because there is no mechanism for direct recovery
- Later stages moving into stage 3 onwards will require a step up in cost to commit to procurement. This is driven by acquisition levels and governance sign off including TEM outputs
- Revenues come in during the deployment stage (Stage 5) and these are factored into the TEM over 40 years
- The financial model considers the cycling of this for multiple clusters and informs the TEM. Ie we should not be looking at individual cluster costs as such but how multiple clusters as a portfolio operate together and revenue from one set of clusters could be used to support further expansion. Inevitably early phases will be more expensive and will often require subsidy to work




Planning Flow

- The planning flow is critical to TEM appraisal as part of the feasibility and deployment process
- · The flow will;
 - · Identify terraced homes
 - Determine the archetypes
 - · Determine substation capacity
 - Determine building physics requirement
 - · Input into the design criteria
 - Overlay community demographics
- Determines;
 - Initial cluster locations
 - · Size of cluster
 - · State of housing and level of retrofit
 - · Lengths of pipework
 - · Connection strategy
 - Orientation and amount of solar PV level of generation
 - · Opportunities for community energy
 - Network constraints and likelihood for flexibility payments
 - · Borehole locations
 - Street works requirements
 - · Affordability criteria of residents
- · Informed by;
 - Benchmarks
 - · Community data (via Fairer Warmth)
 - · Supply chain
 - · Procured and open data sets

Affordability to the householder

Heat System Infrastructure boreholes, heat pumps

Fabric retrofit and wet system

In home controls

OPEX, REPEX, CAPEX -Payback

Roof Top Solar PV (Community owned)

> Offsite renewables community owned

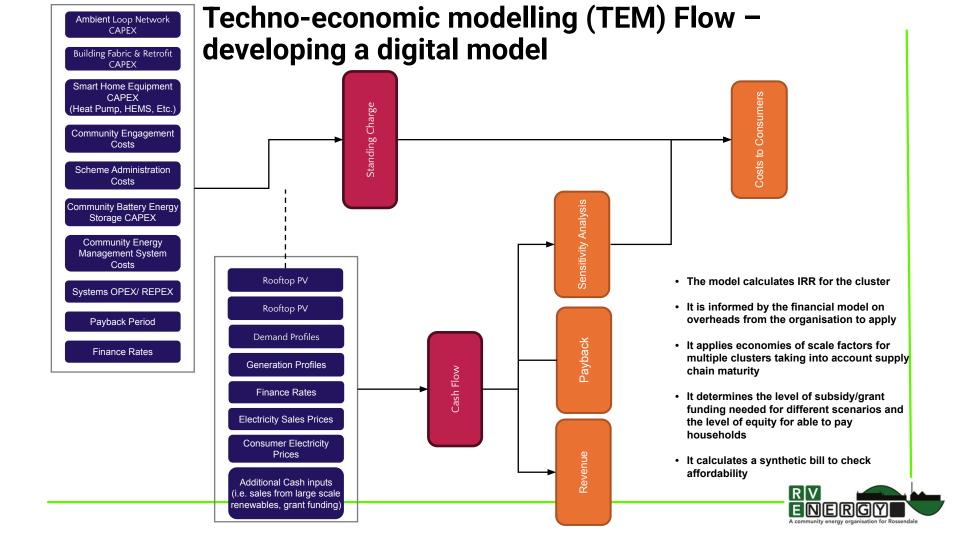
Energy supplier generation pool

OPEX, REPEX, CAPEX, DUoS - Payback

Cost to consumer/Revenue to SPV

Energy Bill can not be greater than before

Sensitivities


- · Rate of finance
- CAPEX
- OPEX
- REPEX
- Economies of scale and rate of uptake
- Payback/NPV requirements
- · Inflation on energy price
- · Balancing market payments

Standing Charge

Energy Price+ tariffs - benefits from

flex, solar etc

Financing NZTS – the financial model and making this investable

Ainsley Barker, Abundance Investment Adam Marvel, SIB

The financial model – what and why

- Links the techno-economic model, the governance / corporate framework, and investor requirements into one coherent flow
- Template / foundational model that can be adapted to the specifics of an area
- Allocates revenues and costs across the various entities within the group structure
- Overlays financing assumptions at entity level; adds in tax / reserves etc; builds in sensitivity and other (IRR / DSCR etc) analysis required by investors

The financial model – what and why

- Aim is that once the TEM confirms initial feasibility, the financial model then provides the detail to show how in practice a scheme is put together from a financial perspective and answers the critical questions:
 - Is the standing charge affordable?
 - What are the operational cashflows generated to service the development and infrastructure debt and what are the debt capacity levels?
 - What is the grant requirement (reducing over time with economies of scale and efficiencies)

Methodology - Key Messages

- Built on first-principles data from the techno-economic model (not generic assumptions)
- Structured to test scenarios dynamically, not to present a fixed answer.
- We are testing the model using:
 - Economies of scale trajectories (200 → 1,000 → 3,000 homes)
 - Capex reduction learning curves
 - Opex and repex options
 - Regional archetype differences
- About building a decision tool that demonstrates methodology, transparency, and robustness and is adaptable for each region

Role of Looped, LDVs, AssetCo, Energy Club (financial perspective)

- Looped national aggregator, governance and oversight, builds investor assurance, digital platform – funded mainly via license and service fees
- AssetCo ring-fenced SPV holding the infrastructure, receiving predictable standing charge revenues, structured as a infra-style investment vehicle.
- LDVs local trusted delivery body that receives delivery/management fees from AssetCo; costs reduce significantly with scale
- Energy Club entity to optimise upsides from solar generation / flexibility to households without affecting bankability.

Key Insights

- The model confirms what is already recognised nationally: these systems cannot be delivered without significant upfront public subsidy, especially in fuel-poor or high-cost archetypes.
- The model is showing learning curve cost reductions and significant benefits when moving from single pilots to aggregated clusters at scale.
- Even in the scaled scenarios, a standing-charge-only model is not affordable without grant intervention – which is entirely aligned with existing Warm Homes Plan policy direction.
- The value of NZTS lies in having the most advanced, granular understanding in the UK of what level of support is needed and where.

Next steps

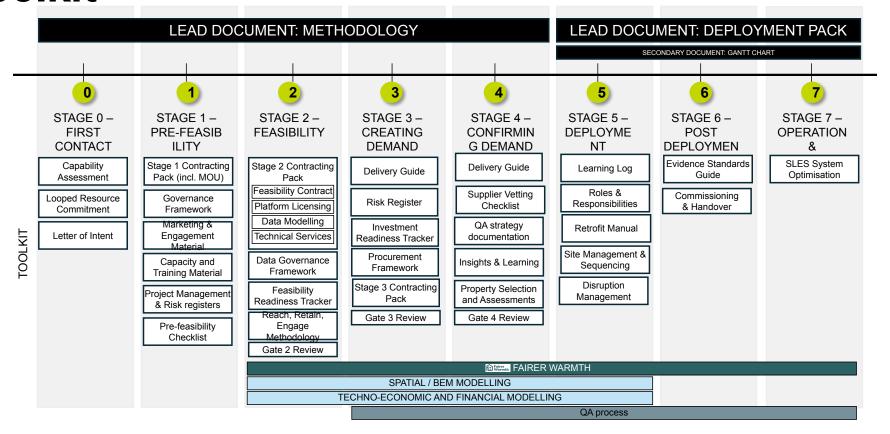
- Complete scenario and sensitivity testing using learnings from latest cost reviews
- Produce grant optimisation profiles per archetype
- Engaging with investors using the model outputs to work through key questions / investment risks
- Using the model to inform our policy asks and strengthen the case for embedding NZTS in the Warm Homes Plan
- Deploy the financial model in real-world use, starting with the three 200-home projects now commencing
- Start moving from the individual LDV cluster investment case to the portfolio / refinance investment case as a new investable asset class is created

Investment Landscape

- Development finance clear challenge on per property basis
- Combination with retrofit is assumed to include grant support, structural clarity is key
- Pilot demonstrations are heartening, there is interest but known risks are substantial
- Long term capital exists in the market focus should be on filling gaps through construction

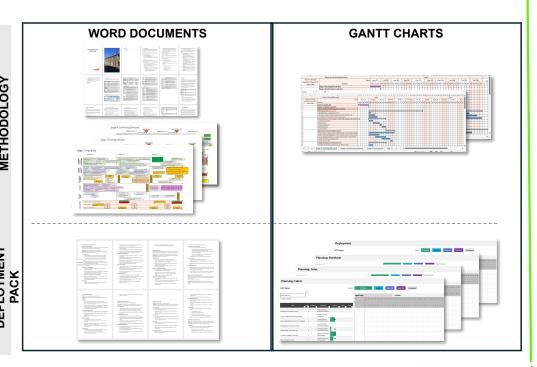
Reflections and next steps – local delivery and replication potential

Kate Gilmartin, RVE



Where are we up to?

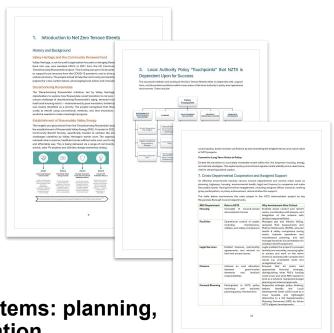
- 1. Body of work that can be shared and replicated for other communities to deliver NZTS
- 2. Testing deployment of 5 systems:
 - 1. Physical infrastructure 3 homes -> 200 homes
 - 2. Creating demand working with Community anchor orgs
 - Virtual infrastructure smart system Strategic Innovation fund
 - Organisational structures test with communities and investors (LAs/NWF/GFI)
 - Digital spine continue to build and refine work towards digital twin



The 8 Stage Methodology and the supporting toolkit

Tools being developed for local delivery orgs

- Looped has refined the methodology and built out the associated tooling that will be used to support local development organisations.
- Additionally, Looped will develop a specific set of tools to accompany the deployment.
- Together these facilitate the spectrum of tooling for a NZTS project.
- Looped is ready to test these in pilot clusters.



Local Authority Handbook

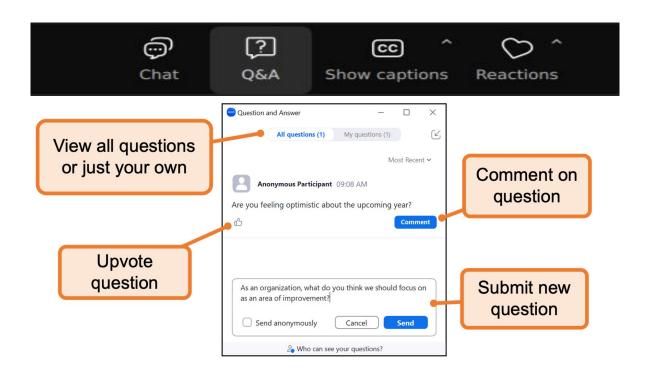
NZTS aligns with and has co-benefits for:

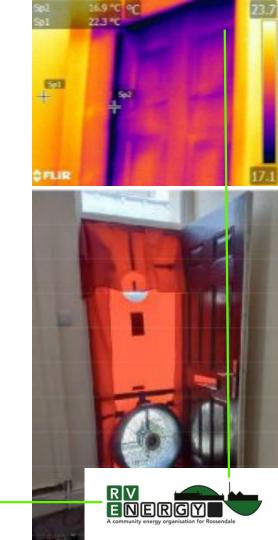
- Climate Action Plans & Local Area Energy Plans
- Public Health Strategies (cold homes, mould)
- Fuel Poverty & Equity Agendas
- Housing Regulation (MEES, HHSRS)
- Economic Growth & Regeneration

The project helped test what can work in LA systems: planning, finance, highways, cross-departmental coordination.

What support does Looped provide?

- Start up support
- Local Development Manager
- Licencing of tools, Fairer Warmth Platform NZTS journey and NZTS standards and methodology
- Peer learning and capacity building
- Quality Assurance
- Links to funders and investors
- Tried and tested methods and ongoing innovation
- Profile and policy advocacy across national & local government, retrofit, energy and community energy sectors




Where Next?

- Network Innovation Allowance (NIA) testing for smart system
- Developing Ofgem Strategic Innovation Fund Beta funding bid
- Conducting study in Leeds
- Funding for x 3 pilots to do feasibility in and cluster development in:
 - Rochdale/Middleton
 - Rossendale
 - Bridgend

Questions?

